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Nowadays, many widely used driving cycle (DC) representing and generating methods are designed for traditional vehicles with
internal combustion engines (ICE). The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle
modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles
(EVs), most of them are powered by low or zero-emission renewable energy sources. The working status and energy management
algorithms of them are very different from traditional vehicles. To facilitate the EVdesign, we proposed a novel DC representing and
construction method to generate DCs for EVs. The whole driving route is divided into several length-fixed segments and each of
these segments is converted into a frequency sequence. After doing that, we can adjust the frequency and amplitude of the generated
driving cycle directly. The experiment results showed that the proposed method was effective and convenient.

1. Introduction

Recently, the rising cost of gasoline and the increasingly
stringent fuel-efficiency standards make electric vehicles a
worthwhile alternative to vehicles with internal combustion
engine [1–5]. As an important research tool, driving cycle
is widely used in the areas of traffic management, vehicular
pollutionmeasurement, and fuel consumption estimation. In
general, DC gives a speed-time profile of driving behavior
in a specific area or city [6–8]. For example, the US Federal
Test Procedure (FTP), the Urban Dynamometer Driving
Schedule for Heavy-Duty Vehicles (UDDSHDV), and the
New European Driving Cycle (NEDC) were developed for
different countries or cities. In most of these DCs, the real-
world driving is viewed as a sequence of acceleration, cruise,
deceleration, and idle modes. This is suitable for designing
an internal combustion (IC) power train, in which the
emission and fuel consumption in each period should be
taken into account carefully. However, the electric vehicle or
some of hybrid EVs are powered by low or zero-emission
renewable energy sources and the energy consumed in the
idle period is very low or close to zero. Additionally, most of
the electric vehicles have an energy-recovery system and the

running efficiencies of them are largely decided by matching
the electromotor, batteries, driving cycles, and so on. The
traditional DC generation and representing methods are
no longer suitable for EVs or HEVs to predict the real
working condition and to indicate the residual energy or
travel distance. An adapted and representative driving cycle
and a new DC constructing method are needed to facilitate
the design of them.

However, without a special DCs generation method for
electric vehicles, a large number of studies on EV design and
energy management algorithm have to use the traditional
driving cycles as their objective functions. Won and Langari
presented a fuzzy logic based control system and evaluated it
via computational simulation under the FTP75 (Federal Test
Procedure) urban drive cycle [9]. Lin et al. used dynamic
programming (DP) to find the optimal control actions
and defined a cost function over the Urban Dynamometer
Driving Schedule for Heavy-Duty Vehicles DC [10]. Rodatz
et al. proposed an original concept to convert the electrical
power flow into equivalent hydrogen cost [11]. And then,
they tested the proposed consumptionminimization strategy
on the New European Driving Cycle (NEDC). Delprat et
al. developed a global optimization algorithm to derive a
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real-time control strategy and tested the algorithm on the
NEDC and a highway DC [12]. Kim and Peng developed
a combined power management and design optimization
framework and tested it for three different DCs [13]. Assanis
et al. described a methodology for integrating vehicle and
engine simulations and tested it for the SAE J1711 DC [14].
Gao and Porandla used simulated annealing and genetic
algorithm to optimize the design of a parallel hybrid electric
vehicle [15]. A combined FTP75/Highway Fuel Economy Test
(HWFET) DC was used to optimize a parallel hybrid electric
power train design. Zhang et al. proposed an optimization
method which has the capability of providing a set of trade-
off optimal solutions among the fuel economy and various
emissions and tested it with a combined UDDS/HWFET
DC [16]. Liu et al. developed a real-coded, adaptive based
hybrid genetic algorithm and applied it to the optimal sizing
of a series hybrid electric vehicle [17]. The performance of
the proposed algorithm was verified with the City-Hwy test
procedure in the ADVISOR environment.

Additionally, a system design or controller configuration
may be best for a given cycle but not robust for another cycle.
The parameters optimized for a special DC are not necessarily
optimal for others or for the entire driving profile [18–20].
Sciarretta and Guzzella believed that the control and design
parameters that perform well under a given conditions may
lead to poor behavior under different conditions [21]. Fugel
et al. showed that the fuel consumption obtained on standard
DCs does not sufficiently correlate with the consumption
obtained in real conditions [22]. For electric buses and
special purpose vehicles (such as electric sanitation vehicle,
electric garbage truck, and electric tank car), the working and
running routes are determined and the traditional driving
cycles can not be used for the special driving mission
profiles. An adapted and representative driving cycle has to
be constructed to facilitate the design of them.

So, in this paper, we introduce a new definition of driving
cycle (distance-based driving cycle, DBDC) and present
a novel methodology to generate it. With the proposed
methodology, a representative DBDC can be easily pro-
duced and the stochastic parameters can be determined by
observed data or be manually adjusted.The generated DBDC
represents the stochastic nature of the observed data. The
proposed methodology gives the following advantages that
are important for EVs or HEVs optimization.

(1) A novel representing method for driving cycle—
DBDC—was proposed, with which a driving cycle
can be presented by a frequency sequence. The
components which appeared in this sequence are
orthogonal and can be adjusted independently. It
is more advantageous than many traditional rep-
resenting methods, in which many parameters are
dependent on each other.

(2) A new DC generation method was proposed, with
which the original DBDC array can be compressed
into several frequency coefficients and these coeffi-
cients can be determined from observed data or be
manually adjusted.The generated driving profiles can
represent the stochastic nature of the observed data.

(3) The proposed method is very useful for electric
vehicle design, and the independent frequency coef-
ficients are very useful for testing the compatibility of
electromotor, batteries, power train, and so on.

The rest of this paper is organized as follows. We first
review the related work on the discrete cosine transform
(DCT). Secondly, we represent the DCT-based approach for
constructing distance-based drive cycle. Then we describe
several experiments in which different DBDC-construction
methods were compared. And with these experiments, we
demonstrate how to use the methodology to build effective
and efficient DBDCs. Finally, we conclude this paper by
highlighting the key contributions of this work.

2. Related Work

2.1. Discrete Cosine Transform (DCT). A discrete cosine
transform is a finite sequence of data points in terms of a
sum of cosine functions oscillating at different frequencies. It
was first defined by Ahmed et al. in 1974 and widely applied
in science and engineering, especially in lossy compression
of audios (e.g., MP3) and images (e.g., JPEG) [23]. It is very
similar to the discrete Fourier transform (DFT), but using
only real numbers. There are 8 standard DCT variants and
only 4 of them are commonly used. The main feature of it is
the property of energy compaction: most of the information
in a given signal is concentrated in a few low-frequency
components.

Formally, the discrete cosine transform is a linear, invert-
ible function 𝑓: 𝑅𝑁 → 𝑅𝑁 (where 𝑅 denotes the set of real
numbers) or equivalently an invertible𝑁×𝑁 square matrix.
There are several variants of the DCT with slightly modified
definitions and the four commonly used forms are DCT-
I, DCT-II, DCT-III, and DCT-IV. In each of them, 𝑁 real
numbers 𝑥

0
, . . . , 𝑥

𝑁−1
are transformed into 𝑁 real numbers

𝑋
0
, . . . , 𝑋

𝑁−1
according to the formulas below:

DCT-I:

𝑋
𝑘
=
1
2
(𝑥0 + (−1)

𝑘 𝑥
𝑁−1) +

𝑁−2
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DCT-IV:
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𝑘 = 0, 1, . . . , 𝑁 − 1.

(4)

2.2. Distance-Based Drive Cycle (DBDC). Driving cycle is the
set of data points representing vehicle speed versus time,
which can provide a wide range of applications and the
most important usages of it are vehicle fuel consumption
estimate and pollutants estimate [24, 25].Many driving cycles
have been developed and most of them are designed for
vehicleswith traditional internal combustion engines, instead
of electric vehicles (EVs) and hybrid EVs (HEVs) [26–29].
For an internal combustion engine, the energy consumed in
stop-and-go scenario is very vast. However, for EV, no electric
energy will be consumed in the idle period. The research
emphasis of EV or HEV is not the fuel consumption or
pollution, but the electric energy saving and the performance
of the given vehicle. The drawback of the traditional DC
generating methods is that they pay too much attention
to characteristics in time domain. However, the frequency
characteristics of DCs have the same importance on energy
saving, vehicle performance, pollution, and so on. For an
EV or HEV designer, state-of-charge (SOC) estimation and
energy recycle are significant issues. How to calculate the
residual energy and estimate the rest of the journey are the
key points they concerned. So, in this section, we introduce
a new defined driving cycle (distance-based driving cycle,
DBDC) to describe the relationship between vehicle speed
and distance.The difference of the two definitions can be seen
from Figure 1, in which no idle phase was presented in the
given DBDC. (In Figure 1(a), the driving cycle was described
by speed-time. In Figure 1(b), the driving cycle was described
by speed-distance.)

Definition 1 (drive cycle, DC). DC is the set of data points
representing vehicle speed versus time.

Definition 2 (distance-based drive cycle, DBDC). DBDC is
the set of data points representing vehicle speed versus
distance travelled from the start point in a given route.

3. Generating DBDCs with Discrete
Cosine Transform

3.1. Splitting the Whole Route into Length-Fixed Segments.
Nowadays, a lot of DC generation methodologies classify
driving scenarios into several categories, for example, stop-
and-go, urban, suburban, rural, and highway. And then,
they build DCs according to different scenarios [30–32].
However, the classification is intuitive and there is not a clear
boundary or criterion existing for it. Particularly for electric
special purpose vehicles, their driving mission profiles are
very special. An adapted and representative driving cycle has
to be built to facilitate the design of them. In fact, many
factors, such as location, topography, driving characteristics,
environment, and traffic, give their effects to the driving
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(b) Distance-based drive cycle

Figure 1: Drive cycle and distance-based drive cycle.

profiles. The complexities of the relationship between them
make it impossible to construct an accurate driving profile
with limited parameters. Researchers listed some important
parameters and modeled the stochastic characteristics of a
driving profile with these parameters. But the accuracy of
them is not easy to be controlled and the parameters are
difficult to be extended.

In this section, we separate the whole route into seg-
ments by distance. Each segment presents a length-fixed
route, with which distance-based driving cycles can be freely
constructed. For each segment, it is very easy to convert
the representing manner of them from time domain to fre-
quency domain. After changing, the number of the frequency
component coefficients of the sequence is fixed (the lengths
of the segments are fixed). So, we can easily calculate the
probabilistic characteristics of it and rebuild a new driving
cycle for EVs. As the frequency components are orthogonal,
we can independently adjust the coefficients to facilitate the
EV or HEV design.

3.2. Changing the Segments into Frequency Domain. Having
divided the whole route into segments and expressed the
segments in speed-distance manner, the discrete cosine
transform can be used to change the segments into frequency
components. Let 𝑥(𝑛) be the sequential data points represent-
ing vehicle speed versus distance, let 𝑦(𝑘) be the coefficients
of different frequency components, let𝑁 be the total number
of the data points 𝑥(𝑛), and DBDCs of the route-segments
can be changed into a series of components with different
frequency coefficients:

𝑦 (𝑘) = 𝑤 (𝑘)
𝑁−1
∑
𝑛=0

𝑥 (𝑛) cos(𝜋 (2𝑛 + 1) 𝑘
2𝑁

)

𝑘 = 0, 1, . . . , 𝑁 − 1,

(5)

where

𝑤 (𝑘) =

{{{
{{{
{

1
√𝑁

𝑘 = 0

√
2
𝑁

1 ≤ 𝑘 ≤ 𝑁 − 1.
(6)
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Figure 2: Discrete cosine transformation.

𝑦 return the unitary discrete cosine transform of 𝑥; 𝑥 and
𝑦 are the same size. The series is indexed from 𝑛 = 0 and
𝑘 = 0.

In fact, these frequency components are very useful for
describing the internal and external parameters disturbing
the constructed driving cycles. Generally speaking, the low-
frequency components are decided by terrain topology, traffic
congestion.The medium-frequency components are decided
by traffic flow, driving characteristics and the high-frequency
components are decided by road condition, rapid driving
maneuvers, spontaneous reactions, and so forth. We can see
this in Figure 2.

3.3. Calculating Probability Functions. After changing the
DBDC into frequency domain, a probability function (or
probability density function) should be assigned to each
coefficient of these frequency components, whichwill be used
to generate random driving cycles. These probability func-
tions are derived by interpolating data from driving profile
analysis.

In this section, we implement one hundred times of
tests with electric sanitation vehicles (ZLJ5071TSL), which
belong to Beijing Sanitation Group Corporation. In the same
work route, we recorded 100 groups of speed-distance data
and divided them into length-fixed segments. After doing
that, we changed these segments into frequency domain
and calculated the distributions of the frequency component
coefficients. For each of these coefficients, both of the largest
value and smallest value of themweremarked.Wedivided the
interval of them into 10 parts and calculated the probability
distributions for each of them. Having done this, we use the
curve fitting functionCftool (Matlab) to create the probability
surface to fit the inputs and outputs. The frequency of the
coefficient values and the surface were shown in Figure 3,
from which we can see that, with the increasing of the serial
number of coefficient, the values and the ranges of it kept
getting down. For example, the ranges of 𝑦(0), 𝑦(10), 𝑦(50),
and 𝑦(100) are 360, 315, 90, and 45. This is decided by the
energy-compaction property of DCT. So, we can present a
route-segment with very few coefficients.

3.4. Reconstructing DBDC Sequence. Based on real statistical
distributions of parameters, it is possible to generate a driving
cycle that is statistically representative of real driving patterns.
In this section, we use the inverse discrete cosine transform to
reconstruct a sequence.The discrete cosine transform (DCT)
coefficients were produced with the probability functions
obtained in Section 3.3. Based on the frequency coefficients
𝑦(𝑘), we can calculate the segment sequence 𝑥(𝑛) and then
reconstruct DBDC sequence by connecting different seg-
ments. The terminal sequence presents the driving cycle in
a speed-distance manner.

Let 𝑦(𝑘) be the coefficients of different frequency com-
ponents, let 𝑥(𝑛) be the sequential data points representing
vehicle speed versus distance, and let𝑁 be the total number of
the data points 𝑥(𝑛); then, the DBDCs of the route-segments
can be obtained by the formula below:

𝑥 (𝑛) =
𝑁−1
∑
𝑘=0

𝑤 (𝑘) 𝑦 (𝑘) cos(𝜋 (2𝑛 + 1) 𝑘
2𝑁

)

𝑛 = 0, 1, . . . , 𝑁 − 1,

(7)

where

𝑤 (𝑘) =

{{{
{{{
{

1
√𝑁

𝑘 = 0

√
2
𝑁

1 ≤ 𝑘 ≤ 𝑁 − 1
(8)

and𝑁 = length(𝑥), which is the same as length(𝑦).The series
is indexed from 𝑛 = 0 and 𝑘 = 0.

4. Algorithm Analysis

4.1. Orthogonality Analysis

Definition 3 (record interval, 𝑀). The record interval 𝑀 is
a fixed distance between two successive speed records. In
general, the distance𝑀 is one meter.

Definition 4 (DBDC sequence, 𝑥(𝑛)). The DBDC sequence
𝑥(𝑛), 𝑛 ∈ [0,𝑁−1], is a set of sequential speed-distance pairs.
𝑛 is the serial number; the value of 𝑥(𝑛) is the speed at the 𝑛th
point. 𝑥(𝑛) can be used to represent the vehicle speed versus
distance traveled from the start point in a given route.

Definition 5 (DBDC frequency coefficient sequence, 𝑦(𝑘)).
The DBDC frequency coefficient sequence 𝑦(𝑘), 𝑘 ∈ [0,𝑁 −
1], is the set of frequency coefficients. 𝑘 is the serial number;
𝑦(𝑘) is the value of the 𝑘th coefficient.

Theorem 6. Let 𝑥(𝑛), 𝑛 ∈ [0,𝑁 − 1], be a DBDC sequence.
Let 𝑦(𝑘), 𝑘 ∈ [0,𝑁 − 1], be the coefficient sequence of 𝑥(𝑛). If
the coefficient sequence 𝑦(𝑘) was obtained from sequence 𝑥(𝑛)
by the discrete cosine transform DCT-II, then, the coefficients
of 𝑦(𝑘) are orthogonal.

Proof. According to the definition of DCT-II,

𝑦 (0) = √ 1
𝑁

𝑁−1
∑
𝑛=0

𝑥 (𝑛) ,

𝑦 (𝑘) = √
2
𝑁

𝑁−1
∑
𝑛=0

𝑥 (𝑛) cos(𝜋 (2𝑛 + 1) 𝑘
2𝑁

) .

(9)
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Figure 3: Statistical distributions of 𝑦(0), 𝑦(1), 𝑦(2), 𝑦(10), 𝑦(50), and 𝑦(100).

The base vector of them is {√1/𝑁,√2/𝑁 cos(𝜋(2𝑛 +
1)𝑘/2𝑁)}.

According to the Chebyshev polynomials,

𝑇0 (𝑝) = √
1
𝑁
,

𝑇
𝑘
(𝑧
𝑛
) = √

2
𝑁

cos [𝑘 arccos (𝑧
𝑛
)] .

(10)

𝑇
𝑘
(𝑧
𝑛
) is a polynomial represented by parameters 𝑘 and

𝑧
𝑛
. The𝑁th polynomial of it is

𝑇
𝑁
(𝑧
𝑛
) = √

2
𝑁

cos [𝑁 arccos (𝑧
𝑛
)] . (11)

If 𝑇
𝑁
(𝑧
𝑛
) = 0 then

𝑧
𝑛
= cos (2𝑛 + 1) 𝜋

2𝑁
. (12)
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Bringing it in 𝑇
𝑁
(𝑧
𝑛
), we get

𝑇
𝑘
= √

2
𝑁

cos {𝑘 arccos [cos (2𝑛 + 1) 𝜋
2𝑁

]}

= cos (2𝑛 + 1) 𝑘𝜋
2𝑁

.

(13)

Obviously, it is the same with the base vector. Since the
Chebyshev polynomial is orthogonal polynomial, the DBDC
transformation is orthogonal too.

4.2. Energy Analysis. In fact, the key feature of DCT is
the property of energy compaction, in which most of the
information in a given signal can be concentrated in a small
number of low-frequency components. DCT is closely related
to the discrete Fourier transform (DFT), but by using only
real numbers [23]. We can accurately reconstruct a sequence
with only a small number of DCT coefficients. In this way,
the DBDC sequence (𝑥(𝑛), 𝑛 ∈ [1,𝑁]) can be expressed by
reduced frequency components (𝑦(𝑘), 𝑘 ∈ [1, 𝐾∗]), where
𝐾∗ ≪ 𝑁.

In Figure 4, we plot the speed-distance picture of an
electric sanitation vehicle. Totally 11041 data points are
obtained and each of them is a speed-distance pair. We did
not split the route into segments and the whole route was
changed from time domain into frequency domain. After
transforming, the obtained coefficients sequence 𝑦(𝑛) was
shown in Figure 4(b), from which we can see that most of

Table 1: Parameters of ZLJ5071TSL electric sanitation vehicle.

Vehicle type ZLJ5071TSL sanitation EV
Chassis type BJ1071VDE0A-1
Max. mass 7495 kg
Driving battery 384V/200Ah Li-ion
Electromotor rated power 60/110 kW
Fan rated power 28 kW/2900 rpm
Max. velocity 80 km/h
Max. travel distance (running) 150 km
Max. travel distance (working) 50 km
Cleaning width 3m
Garbage bin 5m3

Gradient coefficient (𝜃) 0
Drag coefficient (𝑐

𝑑
) 0.33

Tire rolling resistance (𝜇) 0.015
Front area (𝐴 front) 2.5m2

Density of air (𝜌air) 1.2 kg/m3

the energy of the sequence is concentrated into the low-
frequency coefficients ahead.

For further indicating the energy-compaction property,
we calculated the relative energies between the DBDC
sequence 𝑥(𝑛) and the new obtained sequence 𝑥

𝑐
(𝑛) pro-

duced by cutting down the high-frequency components from
𝑦(𝑐 + 1) to 𝑦(𝑁 − 1). Let 𝐸%[𝑐] be the relative energy; then

𝐸%
[𝑐] =

∑
𝑐

𝑛=0
󵄨󵄨󵄨󵄨𝑥𝑐 (𝑛)

󵄨󵄨󵄨󵄨

∑
𝑁−1
𝑛=0 |𝑥 (𝑛)|

. (14)

From Figure 4(c), we can see that 95% energy of the
DBDC sequence 𝑥(𝑛) can be expressed by 1.19% (132/11041)
frequency components of sequence 𝑦(𝑛).

5. Experimental Verification

5.1. DBDC Generation. In this section, one hundred hours
(800 km) of distance-based driving cycle data were acquired
in the city Beijing in February and March of 2014. The
electric sanitation vehicles used for test are ZLJ5071TSL, the
equipment number of which is 400. We obtained these data
with twenty electric sanitation vehicles, the parameters of
which were listed in Table 1.

The probability functions of 150 coefficients were extrap-
olated from the test data of ZLJ5071TSL using a VC++ script.
The whole DBDC consists of several route-segments. Each of
themwas constructedwith themethod above. Figure 5 shows
the generated DBDC snippets. For further investigating and
comparing the recorded data and the created driving profile,
we showed the speed-acceleration frequency distributions
of the two DBDCs in Figure 6, in which the frequency
coefficients were normalized. There are two frequency peaks
(speed = 35, acceleration = 0m/s2; speed = 15, acceleration
= 0m/s2) which appeared in Figure 6(a). Similarly, two
frequency peaks appeared in Figure 6(b) too. We can see that
the frequency distributions of the two kinds of driving data
are very similar.
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Figure 5: The generated and recorded DBDC snippets.

5.2. Frequency Coefficient Analysis. In fact, one of the key
superiorities of the proposed DBDC-construction method
is the convenience on reconstructing the frequency and
amplitude of the DBDC sequences. Having changed the
driving cycle into frequency domain, we can reconstruct a
new DBDC sequence easily by combining some of the coeffi-
cients which appeared in different DBDCs. For example, we
showed original DBDC sequence 𝑌 and some new sequences
(𝑌1, 𝑌2, . . . , 𝑌8) evolved from 𝑌 in Figure 7. Most of the new
building sequences have only partly frequency components.
For sequence 𝑌1, the sequence was constructed with low-
frequency components. It leads to a smooth profile and only
structure information is left. For sequence 𝑌7, the sequence
is constructed with high-frequency components. So, only
details are left. In fact, the low-frequency components are
mainly decided by terrain topology or traffic congestion and
the high-frequency components are mainly decided by driv-
ing maneuvers or spontaneous reaction. Thus, we can freely
examine the influences coming from terrain information or
driving maneuvers by reconstructing the driving cycles with
different coefficients.

5.3. Power Demand Analysis. We can further examine the
physical impact of a driving profile by comparing the fre-
quency features of the power demand. Firstly, we convert
a DBDC into a duty cycle. Then, the internal and external
forces are calculated with a vehicle dynamic model. Let 𝑚
be the vehicle mass, 𝑎 the acceleration, 𝑔 the gravitational
acceleration, 𝜃 the road angle, 𝜇 the tire rolling resistance,
𝜌air the density of air, V the velocity, 𝑐

𝑑
the drag coefficient,

𝐴 front the front area of the vehicle, 𝐹acc the external force for
acceleration, 𝐹grav the projected normal force, 𝐹roll the rolling
resistance, and𝐹drag the aerodynamic drag force.Thus, we can
present the dynamic model like this:

𝐹acc = 𝑚×𝑎,

𝐹grav = 𝑚×𝑔× sin 𝜃,

Table 2: Parameters of the dynamic model.

Max. mass 7495 kg
Gradient coefficient (𝜃) 0
Drag coefficient (𝑐

𝑑
) 0.33

Tire rolling resistance (𝜇) 0.015
Front area (𝐴 front) 2.5m2

Density of air (𝜌air) 1.2 kg/m3

𝐹roll = 𝜇×𝑚×𝑔× cos 𝜃,

𝐹drag = 𝜌air × V
2 × 𝑐
𝑑
×
𝐴 front
2

.

(15)

In Figure 8, we showed the frequency spectra of several
changed driving profiles in power frequency distribution plot
for the given electric sanitation vehicle, ZLJ5071TSL. The
specifications of it were shown in Table 2.The driving profiles
we used are sequences 𝑌, 𝑌1, 𝑌6, and 𝑌8. We obtained them
by adjusting the frequency coefficients of 𝑌. The specific
procedures and methods are shown in Figure 7.

From Figure 8 we can see that the changes in frequency
or amplitude, for a given DBDC sequence, will lead to
large changes on power distribution. And the changes are
always useful for an electric vehicle designer. For example,
in Figure 8 (𝑌1) and (𝑌6), if we leave only low-frequency
components (𝑌1) or high-frequency components (𝑌6) of
the given sequence 𝑌, the range of the power demand
will become very narrow. And the low-frequency compo-
nents carry more power demand information. If we enlarge
only partial components (𝑌8) and keep other components
unchanged, the distribution of the power demandwill change
greatly. So, for an electric vehicle designer, it is a special point
of view to analyze the effects of terrain topology, driving
characteristics, road condition, and driving maneuvers by
reconstructing DBDC with suitable coefficients.

5.4. Comparisons. For many traditional driving cycle devel-
opingmethodologies, selecting test route, collecting real data,
and constructing driving cycle are three major components.
Generally speaking, the developed driving cycle provides a
speed-time profile that is representative for specific driving
characteristics. And the driving cycle is usually used for
testing vehicles, determining the emission factors, and build-
ing a platform for government’s emissions control testing.
To clearly show the features of the proposed driving cycle
developing method, we compare it with the traditional
methods in three aspects: driving cycle expression manner,
construction method, and error.

5.4.1. Comparison-1 (Driving Cycle Expression Manner). To
compare the two different driving cycle expression manners
(DC and DBDC), two separate trips of the same route are
shown. In Figure 9, two different expression manners are
exhibited. In (a), the driving cycle was displayed by distance
and it provides the spatial correspondence. In (b), the driving
cycle was illustrated in time and it showed the temporal
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(b) Generated data

Figure 6: Speed-acceleration frequency distribution histograms for recorded data and generated data.

Y = y(0) + y(1) + · · · + y(2066)

Y1 = y(0) + y(1) + · · · + y(10)

Y2 = y(11) + y(12) + · · · + y(100)

Y3 = y(101) + y(102) + · · · + y(200)

Y4 = y(201) + y(202) + · · · + y(500)
Y5 = y(501) + y(502) + · · · + y(1000)

Y6 = y(1001) + y(1002) + · · · + y(2000)
Y7 = y(2001) + y(2002) + · · · + y(2066)

Y8 = y(0) + y(1) + · · · + y(1001)
󳰀(1000) + · · · + y󳰀(2066)+y

Figure 7: Different frequency coefficients.

correspondence. The trip of the upper driving cycle spanned
for 3912 s and the one below spanned for 3624 s. If we change
them into frequency domain, the low-frequency coefficients
of them might be available for analyzing the global variation
tendency. It contains the traffic signal location, grading,
the time of the day, and so forth. From Figure 9(b), we
can observe that the two driving cycles can not reflect
the correlation of the trips (at the same time points, 600 s
or 1750 s, the speeds or accelerations have no correlation).
However, in (a), the two driving cycles show better corre-
spondence (at the same locations, 3.0 km or 9.9 km, both of
the two speed/accelerations decreased to zero). By comparing
the distinct speed or accelerations at certain points which
appeared in the same route, the distinct landmarks (e.g.,
the traffic lights and stop signs) and road conditions can
be estimated. Thus, we can say that the distance-based
representing method (used in this paper) is more suitable
than traditional representing method to develop driving

cycles for electric buses and special purpose vehicles, whose
working or running routes are fixed.

5.4.2. Comparison-2 (Driving Cycle ConstructionMethod). In
fact, the most difficult task for developing a driving cycle is
to consolidate the huge amount of driving data records into
a representative driving cycle. In general, random selection
approach is a commonly usedmethod for constructing candi-
date driving cycles, with whichmanymicrotrips (bounded by
idling periods) are randomly selected to form a driving cycle
[1, 2, 4–7]. However, the random selection approach is only
suitable for building DCs in a certain region or district. For
electric buses and special purpose vehicles (such as electric
sanitation vehicle, electric garbage truck, and electric tank
car), the working and running routes of them are fixed and
sequential. Constructing candidate driving cycles with the
traditional random selection method will take the risk of
losing most of the geography information of the routes, and
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Figure 8: Frequency distribution of different power demands.

the obtained driving cycles can not reflect the sequential
features of them. This can be seen in Figure 10, where three
DBDCs were shown. In (a), the DBDC-1 was constructed
with the random selection method. In (b), the DBDC-2 was
constructed with the proposed method. In (c), the DBDC-
3 was obtained with the primary data by deleting the idling
periods. The sequence of the microtrips reflects specific
traffic-conditions that appeared in the route, so does DBDC-
2, which was constructed with the proposed method. The
difference of the two driving cycles, DBDC-3 and DBDC-2,
is that DBDC-2 implied not only the sequence information
of the microtrips but also the statistical information coming
from all of the recorded data, while DBDC-3 is just one
time of running. However, in (a), since the random selection
method is adopted, the order of the microtrips is randomly

decided. Even though the values of the assessment parameters
(appeared in Section 5.4.3) in the two driving cycles, DBDC-1
and DBDC-3, are very similar, the obtained driving cycle can
not be used for evaluating the special EVs. Why?

The reason lies in the characteristics of EVs. We can
see this from Figure 11, where a driving cycle and the
associated duty cycle are shown. In the figure, the rotate
speed RPM is used to illustrate the transient and dynamic
performances involved in the power train system.The battery
pack information, including the capacity, state-of-charge, and
energy profiles, is also illustrated. From it we can find that,
during the running process, the SOC or residual capacity of
the battery pack keeps decreasing. For each of the microtrips,
which appeared in the DBDC sequence, the corresponding
SOC or residual capacity is different. If a demand of peak
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Figure 9: The different expression manners. (a) Plots are illustrated in distance. (b) Plots are illustrated in time.
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(c) Driving cycle DBDC-3 (constructed with the primary records)

Figure 10: The generated DBDCs (with different driving cycle
construction methods).

power appeared in a microtrip close to the start point, where
the residual capacity of the pack is sufficient, the demand will
be fulfilled. However, if it appears in a microtrip close to the
end, where no enough power can be supplied, the demand
will not be fulfilled. Thus, the sequence of microtrips is a key
factor for electric vehicles, whose working routes are fixed
and sequential. It should not be randomly constructed.

Additionally, the energy-recovery characteristic of EV
is another reason for us to discard the traditional random

selection method. For an EV, the effectiveness of energy-
recovery system changes with the battery pack status. At
different positions (in a route), the residual capacity of the
battery pack is different. Ignoring the sequence of microtrips
and estimating SOC or residual capacity for an EV with
energy-recovery systemwill lead to large errors. For example,
if the battery pack is fully charged at the start point, a long
distance of downhill will give no help for charging.

5.4.3. Comparison-3 (Errors). For most of the driving-cycle
generation methods, after establishing a candidate cycle, the
assessment parameters will be calculated and compared with
the target statistics (the assessment criteria and parameters
are derived and determined in the period of data collection).
If each of the assessment parameters is different from the
target mean values by less than a given value, 𝜖, the candidate
cycle will be accepted. Otherwise, the next candidate cycle
will be sampled and this exercise will repeat. In Table 3,
we compare the errors of the five candidate driving cycles
(constructed with the traditional method) with driving cycle,
DBDC-2 (constructed with the proposed method). The
assessment parameters employed in the comparison process
are as follows.

(1) Average running speed (𝑉1).
(2) Average acceleration of all acceleration phases (𝑎).
(3) Average deceleration of all deceleration phases (𝑑).
(4) Distance proportions of driving modes-acceleration

(Pa).
(5) Distance proportions of driving modes-deceleration

(Pd).
(6) Average number of acceleration-deceleration changes

(𝑁).
(7) Root mean square acceleration (RMS).
(8) Positive acceleration kinetic energy-PKE (m/s2).

By comparing the values of the eight parameters, we
can see that the error of DBDC-2 is less than that of the
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Figure 11: An example DBDC and the associated parameters.

Table 3: Assessment criteria and the values of them in candidate driving cycles and DBDC-2.

DC 𝑉1 (m/s) 𝑎 (m/s2) 𝑑 (m/s2) Pa (%) Pd (%) 𝑁 (time) RMS (m/s2) PKE (m/s2)
Average 5.71 0.45 0.48 38.62 35.66 125 0.54 0.16
Candidate-1 5.92 0.44 0.49 40.51 33.42 121 0.53 0.15
Candidate-2 5.45 0.45 0.49 39.65 35.06 114 0.56 0.17
Candidate-3 5.61 0.43 0.47 39.61 33.82 129 0.52 0.15
Candidate-4 5.97 0.44 0.48 39.72 34.12 119 0.54 0.16
Candidate-5 5.55 0.45 0.47 38.21 36.42 132 0.57 0.17
DBDC-2 5.72 0.45 0.48 38.88 35.61 127 0.55 0.16

five candidate driving cycles. What is the reason? After all,
both the average values of the eight parameters and the five
candidate driving cycles are obtained with the recorded data
in time domain, while DBDC-2 is constructed in frequency
domain.The reason lies in the two different driving cycle con-
struction methods. For the traditional construction method,
the first step is to calculate the assessment measures for the
collected data. And then, a candidate cycle will be developed
by randomly selecting the microtrips from the microtrip
pool. Finally, if the error between the candidate cycle and the

assessment measure is very small, the candidate cycle will be
reserved. Otherwise, a new construction process will begin.
Since each of the microtrips can only be selected as a whole
section, the probability for constructing a driving cycle whose
test statistics are very close to the target statistics is very small.

On the contrary, for the proposed cycle construction
method, the frequency coefficients of the route-segments are
firstly calculated. And then, the probability functions of these
coefficients are used to generate a randomdriving cycle. Since
the driving cycle is directly constructed with the obtained
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probability functions and, at the same time, the probability
functions are also the evaluation criterions in frequency
domain, thus, the error between the assessment criteria with
the obtained driving cycle will be very small. In fact, the
error calculated in time domain and frequency domain is
consistent. Thus, the test statistics of DBDC-2 are more close
to the target statistics than other five candidate driving cycles.

6. Conclusion

For EVs, the major purpose for building driving cycle or duty
cycle is to develop a method for assessing, predicting, and
testing the performance andmatching degree of batteries and
vehicles.The road condition and driving habit take important
roles in constructing a complex system to characterize or
predict the long/short term effects of battery performance
and life. In fact, many pieces of battery pack information,
including capacity, state-of-charge, current, voltage, and
state-of-health, have intensively relationships with frequency
characteristics of DCs. For example, peak power and the
frequency of duty pulses are primary factors affecting battery
performance and life; the effectiveness of the energy-recovery
system has great correlations on the high-frequency compo-
nents of DCs. So, developing a novel DC expressing and con-
structing method to facilitate EV design is important for us.
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